Barriers associated with trace organics and discoveries on how to reuse semiconductor Fab wastewater for ultrapure make-up water

Paul Westerhoff, PhD, PE Regents Professor & Fulton Chair of Environmental Engineering

Dr. Junli Wang (Post-doctoral scholar) Hyunki "Arnold" Jung (PhD student)

School of Sustainable Engineering & The Built Environment Ira A. Fulton Schools of Engineering Arizona State University (Tempe, Arizona USA)

Prof. Xin Yang Group (Sun Yat-Sen University)

Fabs use a LOT of water (~1000 L per 12" wafer)

A typical Fab uses as much water as 50,000 to 100,000 homes per year

Figure 1: Overlay of U.S.-based chip fab locations (SIA, 2023) on the physical water risks quantity map maintained by the World Resources Institute (<u>www.wri.org/aqueduct</u>).

John H. Rydzewski (WEFTEC, 2024)

Typical Fab Wastewater Treatment Train with Zero Liquid Discharge (ZLD)

Simply **not** enough "reuse" water demand without reusing water in Fab for process makeup water

Challenges to Reusing Industrial Wastewater

Research Need

- Develop treatment processes to effectively destroy urea and other compounds present in RO permeate from Fab wastewater
- Use this treated water as UPW make-up water

Figure 5. Plot showing correlation between the measured urea concentration and the TOC concentration measured by Analyzer X during the fourth excursion.

Rydzewski, ULTRAPURE WATER® -UP190220 (2002)

Approach
X* can be
produced by
UV Light,
Ozone or
other
processes

But which X* should we produce ?

Urea	Reactive	CO ₂ & ions		
or other Low molecular Weight organic Compounds	Radical Species	easily removed by UPW		
	(X*)	processes		

	O ₃	•OH	SO₄ [⊷]	e ⁻ _(aq)	H•	0	Br•	Br₂⁺⁻	HBrO	Cl ₂	CO₃⁺-
Urea	5×10 ⁻²	7.9×10⁵	-	3×10⁵	< 3×10 ⁴	-	-	-	-	-	1×10 ³
Tetramethylamm onium hydroxide (TMAH)	-	7.5×10 ⁷	9×10 ⁴	-	-	1.2×10 ⁸	-	-	-	< 1×10 ³	-
Acetone	3.2×10 ⁻²	1.1×10 ⁸	-	6.5×10 ⁹	2.6×10 ⁶	-	-	-	-	1.4×10 ³	1.6×10 ²
Isopropanol (IPA)	1.9	7.5×10 ⁹	5.3×10 ⁷	-	7.4×10 ⁷	1.2×10 ⁹	-	-	-	1.5×10⁵	4.3×10 ⁴
Dimethyl sulfoxide (DMSO)	8.1	6.6×10 ⁹	-	2.4×10 ⁶	6.2×10 ⁶	-	-	-	-	-	-

Approach #1 – Ozone + Bromide or Peroxymonosulfate (PMS)

Produces bromine radical (Br[•]), sulfate radical (SO₄^{-•}) or hydroxyl radical (HO[•])

Approach #1 – Ozone + Peroxymonosulfate (PMS)

Differentiating mechanisms

By-Products of Urea oxidation TOC = Total organic carbon

Nitrogen mass balance

Approach #2 – Vacuum Ultraviolete Light + Peroxydisulfate (PDS)

Produces sulfate radical $(SO_4^{-1}) + 185 nm/254 nm light$

$$S_2 O_8^{2-} + h \nu \rightarrow SO_4^-$$

VUV/UV/PDS technology: Volume = 2.65 L 46 W lamp:185/254nm Spike PDS, 23.8-238 mg/L Na₂S₂O₈ Urea:1-60 mg/L

Effects of initial PDS or Urea Concentrations Each influences steady state SO_4^{-1} concentrations

By-products of urea reactions with VUV/PDS (1 mM)

Comparing Degradation & ByProducts

VUV/PDS emerges as better potential candidate to destroy Urea

Broader perspective around capabilities of Radical Species to oxidize target LMW Organics

	O ₃	•ОН	SO₄⁺-	e⁻ _(aq)	H∙	O •-	Br∙	Br₂⁺⁻	Cl•	Cl ₂ •-	CO ₃ •-
Urea	5×10 ⁻²	7.9×10⁵	4.0×10 ⁷	3×10⁵	< 3×10 ⁴	-	1.3×10 ⁷	BDL	-	_	1×10 ³
Tetramethylam monium hydroxide (TMAH)	-	7.5×10 ⁷	9×10 ⁴	-	-	1.2×10 ⁸	6.6×10 ⁶	BDL	-	< 1×10 ³	-
Acetone	3.2×10 ⁻²	1.1×10 ⁸	<10 ⁶	6.5×10 ⁹	2.6×10 ⁶	-	5.2×10 ⁷	BDL	1.1 ×10 ⁸	1.4×10 ³	1.6×10 ²
Isopropanol (IPA)	1.9	7.5×10 ⁹	5.3×10 ⁷ 7.1×10 ⁷	-	7.4×10 ⁷	1.2×10 ⁹	2.6×10 ⁷	BDL	1.1 ×10 ⁹	1.5×10⁵	4.3×10 ⁴
Dimethyl sulfoxide (DMSO)	8.1	6.6×10 ⁹	2.0×10 ⁹	2.4×10 ⁶	6.2×10 ⁶	-	5.8×10 ⁷	BDL	1.8 ×10 ⁹	3.1 ×10 ⁶	-

Red values provided by collaborator: *Xin Yang Group (Sun Yat-Sen University)*

- Sulfate radical generated by VUV/PDS (faster) or O₃/PMS can mineralize urea and other low molecular weight organics present in reverse osmosis permeates of Fab wastewaters
- Byproducts of this process (nitrate, sulfate) are at lower concentrations than present in municipal tap water - and therefore readily removed by existing UPW treatment systems
- **Pilot testing** of process + UPW system will start late 2025

Barriers associated with trace organics and discoveries on how to reuse semiconductor Fab wastewater for ultrapure make-up water

Paul Westerhoff, PhD, PE Regents Professor & Fulton Chair of Environmental Engineering

Dr. Junli Wang (Post-doctoral scholar) Hyunki "Arnold" Jung (PhD student)

School of Sustainable Engineering & The Built Environment Ira A. Fulton Schools of Engineering Arizona State University (Tempe, Arizona USA)

Prof. Xin Yang Group (Sun Yat-Sen University)

Effect of solution pH

PMS is acidic when added to RO permeate water

